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On fracture initiation in a material with an

ellipsoidal inclusion
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Fracture initiation at the interface of an inclusion in a metallic material both at room
and elevated temperatures, using the equivalent inclusion method, is discussed
theoretically. It is shown that the critical strain for fracture initiation at the interface
of the inclusion is strongly affected by shape, size, orientation and rigidity of the
inclusion, and by the presence of external stress. Dynamic recovery by diffusion of
atoms has a large effect on the decohesion at the inclusion—matrix interface in the
high-temperature range. Fracture initiation of a brittle material strengthened with

strong fibres is also discussed.

1. Introduction

Most non-metallic inclusions contained in
metallic materials are usually very hard to
deform and often become the origin of fracture
in those materials.

Mori et al. [1, 2] discussed fracture initiation
at the interface of a spherical, fibre or disc inclu-
sion during tensile deformation of the material,
using the equivalent inclusion method [3]. How-
ever, little work has been performed on fracture
initiation at the interface of an ellipsoidal inclu-
sion with arbitrary aspect ratio [4] or on the
decohesion at the interface of the inclusion in the
high-temperature range where recovery due to
diffusion of atoms occurs [5].

In this study, a theoretical discussion was
undertaken on the effects of several factors,
including shape, size, orientation and rigidity of
an inclusion, on fracture initiation at the
inclusion-matrix interface both at room and
elevated temperatures, using the equivalent
inclusion method and the results of a previous
study [6].

In a ceramic strengthened with strong fibres, a
large tensile stress (internal stress) occurs in the
fibres in the matrix, causing either decohesion at
the interface of fibres or fracture of the matrix as
a result of phase transformation or difference in
thermal expansion between fibres and matrix [7].

3750

Fracture initiation in a brittle material is also
discussed.

2. Stress and energy conditions for
fracture initiation

The deformation of a metallic material with an
ellipsoidal inclusion ((x] + x3)/d® + x3/c* = 1;
volume of inclusion, V = 4na’c; aspect ratio,
x = c/a) is considered. The elastic constants
of the inclusion, C%,, are different from those
of the matrix, Cy,. Fig. 1 shows an ellipsoidal
inclusion in the matrix. It is considered that a
uniform plastic deformation (e¥ = &*, e =
e¥ = — &%2in (x|, x,, x;) coordinates) occurs
only in the matrix due to an applied tensile stress
o5 The stress state in this case is identical to
that when the eigenstrains, &} = — 2¢¥ =
— 2&¥ = — ¢*, occur only in the inclusion
under an applied stress, % [3]. The total stress in
an inclusion, a,!j, is the sum of the internal stress
with the eigenstrains (o});, (plastic deformation
effect) plus the disturbed applied stress field due
to rigidity effect, (};);,,- The stress condition for
fracture initiation at the interface of the inclu-
sion is satisfied [1] when

(033)im + (053)in = E*/10 or E/10
(M
where E* = 2u*(1 + v*) and E = 2u(l + v)

1 —
O3 =
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Figure | An ellipsoidal inclusion and Cartesian coordinate
system.

are Young’s modulus of the inclusion and that
of the matrix, respectively. The critical strain for
stress condition, ¢**, can be calculated from
Equation 1. The stress components are obtained
by the equivalent inclusion method [1-3, 7]:

(Uf'j)int Cijkl(eil - EL) = Cg"';cl(efd — &f)
)
(5)in Cyleiy + e — ely)
Cluleis + k) 3)

where. € = Sum€ps € = Sumém and ey =
Cyy 0 . Here Sy, is the Eshelby tensor [3], and
el and e are functions of & and e, respec-
tively. The internal stresses immediately after
fracture initiation can also be calculated by
Equations 2 and 3, provided that the elastic
constants of the inclusion after decohesion are

given as follows [1]:

C*, = C¥p = E*/(1 —v*)

Ck, = C¥, = V¥E*/(1 — v*) 4

Chs = Gy = Gy @
= C}y = C¥p =0

The Gibbs free energy of the material with an
inclusion before and after decohesion, G, and G,
respectively [1], are given by

G, = 34,ue®V + Baoye* V
+ D032 + Syiu &)
G, = LA,ue®*V + Byohe*V

+ Dyo¥/2u + St + ym)  (6)

Here the first and second terms are the elastic
strain energy and the interaction energy between
internal stress field and external stress, respec-
tively, and the third term is the energy term
associated with the rigidity effect. 4, Band D are
shape factors, given in the Appendix. Subscripts
1 and 2 in these equations denote quantities
before and after the initiation of fracture, respec-
tively. S'is the surface arca of an inclusion. y;, yy
and y,_y are the surface energies of the inclusion
and of the matrix and the interface energy per
unit area, respectively. It was assumed that
Poisson’s ratio of the inclusion, v*, is the same as
that of the matrix, v, and that

m = Eaqy/10 = u(l + v)ay/S
w*(1 + v)ap/5

where g, = 3.61 x 107"m is the lattice con-
stant of the inclusion and the matrix, and
Y-m = lym — nl (1)

The energy condition for fracture initiation is
satisfied if G, > @, [1]. The critical strain &*° for
G, = G, is given by

It

!

e*e = B, — B, 0-_?3 + <_4(1 + ‘))ao‘g)l/2
‘ A4 — 4, u 5(4, — A)V
for u* > (7)
o o BB o5 . (4m(1 + v)a0S>”2
¢ A, — 4, u 5(4, — AV
for u* < p ®

where m = u*/u. The energy condition is satis-
fied when e* > ¢*°. Here o%; should be replaced
by o7, and the permutation of indices should be
applied to the quantities in Equations 1 and 4 to
8 when the external stress is o}, and the eigen-
strains are &f, = — 2e5 = — 25 = — &%,

Figs. 2 and 3 show the result of calculation by
Equations 7 and 8. The volume of an inclusion
is kept constant (V = %na’c = $na*’ = con-
stant) in this calculation. Both £*° and &*¢ are
strongly affected by aspect ratio (x = c/a),
orientation and rigidity of the inclusion. Both
the energy and stress conditions are satisfied
when ¢* > &*° and ¢* = &¥. ¢¥ is independent
of particle size (full curves), but & increases
with decrease of particle size (broken curves).
The effect of applied stress on &*° and &** is also
dependent on x, m and orientation of the
inclusion.
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Figure 2 Relation between aspect ratio (x) and the critical strain for fracture initiation at the interface of an inclusion.

3. Effect of dynamic recovery on
fracture initiation at the
interface

The recovery effect due to diffusion of atoms on

fracture initiation at the interface of the inclu-

sion should be taken into account at elevated
temperatures. The relationship between the
eigenstrain &* and the observed plastic strain

TABLE I Relation between Cand aspect ratio x

during the deformation, ¢, under a constant
(plastic) strain rate, ¢, is given by [6]

et = (O —exp(=Ce/d)]  (9)

The value of C is dependent on temperature, on
shape and size of the inclusion and on dynamic
recovery process [6], as shown in Table 1. Using
Equation 9, the critical strain for the stress

e = — 2 = — 2% = — ¢&* g = — 2% = — 2e%; = — g*
x < 1 x =1 x > 1 xs1
94, 40D, 1 1 1 x4
¢ 4kT *IxB a*? a*?x*P a*?
c/ 94, uQD b 1 1 1 1+ %
/ 2kT a*’ a*’ a¥’x 2a*3
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Figure 3 Effect of particle size on the critical strain for fracture initiation at the interface of an inclusion.

condition, &, and that for the energy condition,
&, in this case are respectively given by

g = — (/C)In (1 — Ce*/é)
& = — (O)In(l — Ce*/s)

(10)
(1)

Figs. 4 and 5 show the relation between &, &
and x where dynamic recovery due to vol-
ume diffusion or grain boundary diffusion is
taken into account. The numerical values used
in this calculation are D, = 8.30 x 107 "®m?
sec™! (1073 K) [6], Dgs = 1.15 x 10~ ¥m?
sec™' (873 K) [8], grain boundary thickness
6 ~2b =510 x 107"m, molar volume of
the matrix @ = 7.10 x 107°m?®, u = 5.83 x
10*MPa [6], v = 0.30 and ¢ = 1.33 x 107*
sec™!. The volume of an inclusion is also kept
constant in the calculation. Strains & and & are

both dependent on size, shape and orientation of
the inclusion and on the recovery process.

4. Stresses at the interface of an
inclusion

Stress components just outside an incluston can
also be obtained as a function of Eshelby tensor.
The stress components arising from the rigidity
effect have been calculated by other investi-
gators [9, 10]. The stress components respon-
sible for fracture initiation are shown as follows.

4.1. Inclusion with eigenstrains,
&3 = — 285 = — 285, = — &7,
under an applied stress, 043
At equator points of an inclusion ((a, 0, 0) and
so on), the stress component due to plastic de-

formation effect, (a}3);., and that arising from
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the rigidity effect, (63),., are given by

2 v
(0%)im = 1 _quv [(2v(51|11 + Siun) + 2(1 = ) Sy, — . v> ef)
>
+ (2VS1133 + (1 = v)Syy; — l_——;) e;:l
(12)
2u v .
(0% = 1= 2v [(2"(511111 + Sin) + 2(1 — v)Syy — 1= V) el
v? ,
+ <2VS1133 + (I — v)Syy — 1—:_v> 6’;3] + 0'3A3
The stress components at polar point (0, 0, ¢)
are given by
2m
(U%)im = (0%)m = 1 _#2‘) {2v(S)n + Snun) +2(00 — V) Siulel
+ [2vS)15 + (I — v)Syslel; + (1 — 2v)e* } (13)
M 1 2mp T
(0353)im = (033)in = 1 — 2y {2v(S1 + Siz) +2(1 — V)Sule
+ [2vSi3 + (1 — V)Sszss]eg + (1 + (1 — 2")9?3}
where
o = m[(1 — m)(Siy + Sy + Suy) — 1le*
3 (1 - myF(x) — (1 — mG(x) + 1
o= Ol = m[l — (1 — m) (28,133 + Sy)]e*
" 2 2[(1 — mP*F(x) — (1 — m)G(x) + 1]
ol = (I —m[ — A — mQ2vSsy, + Sy + Snzz)]e% (14)
. (1 — mPF(x) — (1 — m)G(x) + 1
o= ol = (I —m[(Q — m) (S + Siz) — V]e[;a
" 2 (1 — mPFx) — (1 — m)G(x) + 1
F(x) = (Sin + Six)Sis — 28158530
Gx) = Sy + Sie + S
e?} = 0?3/E
4.2 Inclusi ith ei i M I 2mu
.2 inclusion with eigenstrains, M = G = 5 {1 — v)S
o = = 26 = — 20y =~ &,
under an applied stress, 6%, + v(Sym + Sii)leh
The stress components at (g, 0, 0) are expressed T
by + [(1 = v)Sin + v(Sin + Sai)lex
T
2mpu + (Siiss + vSum)es
O = ! int — 1 - S
(071))int (o11) 1 — 2y {[( vSin + 0+ - 2v)ef“} (15)
+ v(Sin + San)lel The stresses at (0, a, 0) are given by
+ [(1 = VS + v(Sin + Sunlen 2
T * (O-rlv{)im = 1 ”2 [(V(Snzz + Syn)
+ (Siis; + vSpde; + (1 — 2v)e } -y :
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Figure 4 Relation between aspect ratio and the critical strain for fracture initiation at the interface when dynamic recovery

by diffusion of atoms is taken into account.

V2
+ (1 = )8 — T en @) =

+ [v(Sun + Sunn)
+ (1 =S — V]f?;rz

>
+ (SIHB + VS — 1—_;> e-zrs:l
2
(J{v{)inh = 1—_#'2“;[<V(Suzz + Sun) (16)
v .
+ (1 =S - T‘;_v>31Tl

+ [v(Snn + Sin)
+ (1 = V)8 — v]eg

+ (S1133 + vSuy

v? , A
- )‘5;3] + o
1 —v

The stresses at (0, 0, ¢) are expressed by

(o M Yo =

2
1 ——u2v I:(V(Snzz + Ssin)

V2
+ =S — 1—"__v>elrl
+ <V(Sn|1 + Si0)

V2
+ (1 = v)Sn — i‘:‘“‘\}‘)e;
+ (S5 + vSup — v)e;]

2 ]:(V(Snzz + Sii) an

1 — 2v
v ,
+ A =S - '1—_‘;>€T1
+ <V(S1n| + Si0)
- v y
+ (1~ v)Si, — ‘1—_—‘})3;2
+ (Suz + vSi — v)e;'] + 0?1
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where

ml(1 — mPHX) + (1 — m)I(x) — 2]e*

(18)

e = 2[(1 — m)Ux) + 1][(1 — myF(x) — (1 — mG(x) + 1]
& = ml(l — mpJ(x) — (1 — m)L(x) + 1]e*
2[(1 — m)UX) + 1J[(1 — mPF(x) — (1 — mG(x) + 1]
o = m[i — (1 — m)T(x)]e*
2[(1 — mP*F(x) - (1 — m)G(x) + 1]
o (m — D1 ~ mpPV(x) + 1 — mW(x) — 1]}
" (1 — mUX) + 11[(1 — mPF(x) — (1 — m)G(x) + 1]
& = (m — D1 - mX(x) - (I — mY(x) + vley
(1 — mUx) + 1][(1 — m)*F(x) — (1 — mG(x) + 1]
o = (m — Dy — (1 = mZ(x)]e};
? (1 — myFx) — (1 — m)G(x) + 1
Hx) = S;508Ss0 + St — Sun) — S5552S0 + Sim)
I(x) = 28, + 28353 + Sium + Sus
J(x) = S350 + Sun) — Sun(BSun + Sun — Sin)
L(x) = 2Sum + Sun + S — Si
T(x) = Sun + Sz + Sy
Ux) = Sum — Siun
V(x) = SiusmSun — SunSun + VISun(Ssu + Sis — Sin) — SisSinl
W(x) = S+ Su; + v(Sm + Sus)
X(x) = SynSim — SunSmn + VSunSin — Sisn(Shn + Sun — Sun)l
Y(x) = Sim + v(Sun + Sip — Sim)
Z(x) = Sy + v(Sun + Sum — Sun)
et = o)\/E

The Eshelby tensor, Sy, is given elsewhere [3,
11, 12]. Fig. 6 shows the stress components at
the interface of an inclusion calculated by the
above equations. Those values are normalized
by an external stress (¢3; or ¢5) or Eg* in this
figure. The siress values of (6}3),,, and (a}).,, at
polar point B ((0, 0, ¢)) are greater than those at
equator points A ((a, 0, 0)) and C ((0, a, 0)) at
large values of the aspect ratio (x ) when g4, is an
external stress. Fracture initiation can occur at
polar point B in this case. Both (¢}),, and
6}y have maximum values at A for small
values of x when of, is applied. Therefore,
decohesion at the interface of an inclusion can
be initiated at this point of an inclusion of smali
aspect ratio. Shibata and Ono [4] considered
that decohesion at the interface of an inclusion
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-of small aspect ratio (x) occurs at point A

(or C) due to the plastic deformation effect
((6%),) with eigenstrains, & = — 2} =
—2¢% = — ¢*, under an external stress, 5.
But this is improbable because (03} ), is negative
at that point in this case. Their result clearly
conflicts with the experimental observation of
steels with oblate MnS inclusions deformed at
room temperature [13]. As is known from Figs.
4 and 5, even at high temperatures the decrease
in stress concentration due to recovery by dif-

-fusion of atoms is smaller at larger aspect ratio

when the eigenstrains are &} = — 2e} =
—2e% = — ¢*, while itis larger at larger aspect
ratio when &} = — 2} = — 2% = — ¢&*.
The effect of recovery on stress concentration is
smaller for larger particle size. It was suggested
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Figure 5 Effect of particle size on the critical strain for fracture initiation at the interface when dynamic recovery by diffusion

of atoms is taken into account.

that void formation at the interface of an inclu-
sion clearly depends on its shape and size also
in the high-temperature deformation of a cobalt-
base superalloy {14].

5. Fracture initiation of
fibre-reinforced composite
materials

Decohesion at the second phase-matrix inter-

face or fracture in the matrix can be caused by

internal stresses induced by transformation of
the second phase or by differences in thermal

2m(p + rv¥)ue*

expansion between the second phase and the
matrix upon cooling from high temperatures [7].
The equivalent inclusion method is also appli-
cable to the understanding of fracture initiation
of composite materials containing a large
amount of high-strength fibres (x = c/a » 1,
V = 4nd’c) when the eignstrains &f = ¢ =
pe* and ef, = re* occur only in the fibres. If the
interaction among the fibres and the image force
term are taken into account [15], the internal
stresses and the elastic strain energy, E,, are
given by

o, = 0% = 1 — 2 +m a -5
2m{2pv* + rlm(1 + v*) + 1 — v*]} pe*
o — 19
033 1 — 2v* +m a-59 (19)
Nmpue**V
Eq = T— 2% +m {20 + 4*rp + Plm(l + v¥) + 1 — v} (1 — /)
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Figure 6 The stress components at the interface of an inclusion.

where N is the number of fibres. The stresses just  where o, is independent of R. The absolute
outside a fibre in (R, 8, z) coordinates (z-axis values of ¢, and o, have maxima at R = a.
parallel to x;-axis) are obtained by the elastic Decohesion at the interface of the fibre can
solution of a cylinder under internal pressure occur when e* < 0, while fracture of the matrix
and axial stress [16], provided that the fibre is  is expected when e* > (.

extremely long. The stress components in the
middle portion of a fibre are given by

2m(p + rv¥)ue*

Onee = ZE I 04 )
__ 2m(p + rv¥)pe* _
Cosee = — LT 0 - ) (20)
_2m{2pv* 4 r[m(1 4+ v¥) + 1 — v*]}ue*
% = [— 2% +m 4
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5.1. Decohesion at the interface of the
fibre (e™ < 0)
It is considered here that the stress condition for
decohesion at the interface of the fibre is satisfied
when the internal tensile stress exceeds E*/10 or
E/10. As for the energy condition, it is assumed
that the condition is fulfilled when the elastic
strain energy becomes greater than the increase
of surface energy due to decohesion, namely

@0

where S = nfac. For isotropic eigenstrain
(p = r = 1), decohesion is caused by the axial
internal stress o}; of a fibre, because a}; > o}
(or 6k,) when m > 0.

Fig. 7 shows the values of the critical strains
for both conditions calculated from the above
equations plotted against the radius of the fibre
for v¥ = v = 0.30 and f = 0.10. Both critical
strains have maximum values when m = 1. For
uniaxial eigenstrain (p = 0, r = 1), the mag-
nitude of ¢%; is also important. In contrast, the

EN — S+ ym — 7i-m) > 0

=5

10° 10 10"

of tfibre (M)

for fracture initiation at the interface of a fibre with isotropic

stress condition is defined by &}, (=g},) for
biaxial eigenstrain (p = 1, r = 0), since o},
(=0%) > o). Fig. 8 shows the value of the
critical strains for v¥ = v = 0.30 and f = 0.10
plotted against fibre radius. The value of m has
little effect on the critical strains for p = 0 and
r=1whenm < land forp =1andr =0
when m > 1.

5.2. Fracture initiation in the matrix
(e* > 0)

The fracture of brittle matrix can be induced by
thermal stress or transformation of the second
phase. Fracture of the matrix normal to the
f-direction (in z—8 plane) occurs only when
p =1 and r = 0, because (0y)z-, is always
greater than ¢, (Equation 20). In contrast, frac-
ture of the matrix is expected to occur vertically
to the fibre axis when 6, > (6)z_,. This type of
fracture can occur for p = Oand r = 1 1if

vE — f(1 — 2v*)
1 +vf

m > (22)
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Fracture can also occur for isotropic eigenstrain
(p=r=1if

The axial stress in the matrix of the material is
very large for isotropic eigenstrain when the
rigidity of the second phase is much higher than
that of the matrix (large m). For example, in
concrete structures strengthened with steel bars
(m =~ 10), fracture of the concrete matrix with
low tensile strength (usually lower than
5 x 107°E) can occur to the large axial stress
induced by a slight volume increase of steel bars
as a result of oxidation or by the constriction of
the concrete matrix during drying [17]. The axial
internal stress in the matrix, ¢,, increases with
increase of the volume fraction of steel bars
(Equation 20). Therefore, care should be taken
in the material design of concrete structures as
well as in the protection of steel bars from severe
oxidation.

(23)

~
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6. Conclusion

Fracture initiation at an inclusion in a metallic
material both at room and high temperatures
has been discussed theoretically using the equi-
valent inclusion method and the results of analy-
sis of a previous study.

It was shown that the critical strain for frac-
ture initiation at the inclusion—matrix interface
is strongly affected by shape, size, orientation
and rigidity of the inclusion, and by the presence
of external stress. Dynamic recovery by the dif-
fusion of atoms, which is also dependent on
several factors including size, shape and orienta-
tion of the inclusion, and so on, has a noticeable
effect on decohesion at the interface of the inclu-
sion in the high temperature range.

Fracture initiation of a brittle material
strengthened with strong fibres was also pre-
dicted using the equivalent inclusion method
when isotropic or anisoptropic eigenstrain
occurs only in the fibres.



Appendix » where

The values of A,, B, and D, before e, = — mEy(x)e*[Fyp(x)
fracture initiation can be calculated T T *

. = = mE (x)e* [[2F,,(x)]
using the Eshelby tensor, S; én €2 2 /[2Fin ()
[1-3,7,11,12] Fo(x) = (1 — mF,(x) + F(x)

A.1. Inclusion with eigenstrains,
F, = (1 — S+ 8 1 -8
g = — 265 = — 2}, = — &, under 2 (%) ( IS 122) ( 1333)
an applied stress, 6%; + 2851 Sl — 2981
el el, 3
Al = - 2m <(Sllll + S1122 - 2‘5'3311) 8—:_ + (Sll33 - S3333) ;;33 - §>

_ m[(1 — m)(Syy + Syn + Spy) — 1]
Bi= - (1 — myPF(x) — (1 — mG(x) + 1 (A-D
b 1 —m[l — 1 = mQvSyy + Sin + Szl
e 2(1 + W[ — my*F(x) — (1 — m)G(x) + 1]

A.2. Inclusion with eigenstrains,
&7 = — 26, = — 265, = — &%, under
an applied stress, o9,
T
€y

T
e
4, = —m <(S1122 + Sy — 2840) o + (S + Sun — 285) 8-12

*

+

(S3333 - SllS})Z_% - 3>
(A.2)
~ ml(1 — mPHx) + (1 — mI(x) — 2]
A0 — mUx) + N[ — mPFx) — (1 — mG) + 1]
P m — D1 — mPV(x) + (1 — mW(x) — 1]
P20+ [ — mUx) + (0 = mPFx) — (1 = mGX) + 1]

A,, B, and D, immediately after fracture initia- F(x) = (1 —v)(S5355 — 1) + 2vS;33
tion are also expressed by the Eshelby tensor

[1-3,7, 11, 12]. F(x) = (1 =v)(Sy, + Sun
+ 2985, — 207
A.3. Inclusion with eigenstrains,
9 Fy(x) = v(Syy + S — D + (1 = v)Syy,

83 = — 28, = — 2&, = — &%, under
an applied stress, o5,

B 2m(l + v) A.4. Inclusion with eigenstrains,

A4, = ikl S 4 &1 = — 28, = ~ 2&3, = — &*, under
I —v . 3
an applied stress, o4
el e; 1 m(l + v) el
X <(Sllll + S1122) ;%kl— + S1133 8_::: - 5) AZ = - 1 —y ((SIIZZ + S3311) —;9—;%
mkFy(x) er.
B, = Fa—bd(x) (A.3) + (S + S3311);i_2
5 - (S + S &1 (A4)
, = 20+ WEL () 1133 1333) T .

x [(1 = mF(x) — (1 + 90 -2 B — m[(1 — m)Q,(x) — Ry(x))/[2F(x)]
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D, = —[1 —mhx + (1 - mK(x)
— (1 =2nA + V)20 + MEX)]

where

ey = m[(1 — m)Qy(x) — Ry(x)]e*/[2F(x)]
ep = — ml(l — m)Sy(x) — Hy(x)]e*/[2F(x)]
en = — ml(l — mU,(x)— Hy(x)]e*/[2F(x)]

F(x) = (1 - mFX)
+ (1 — mG,(x) + Hy(x)
F(x) = Sun{(Sun — Suz)
x [v — 2(1 = v)S)13]
+ (1 — 2v)Sy i}
+ Suu{l = VSIS — D
+ Siunlv — A = V)Sinl}
G,(x) = (Sizm — Sun)
x [(1 = v)(Sip + Sin) + vSuul
— SualvSin + (1 — V(S — D]
+ (=S — vSuxn
+ S35 (Sim — V)
H(x) = (0 —=9ESun— D+ v(Sin + Sun)
L(x) = Sl + v (A — v)Syu;,
— vl = (S — Sun) — V]
— Sap[(1 — MSin
+ v(1 — VS n — V]
— v (Sp — Sun)
K& = (1 —v—v)(Sn + Sun)
+ v(1 — v)S)i»
+ V(S — 2) + vSum
0,(x) = Syxull — »)Sun — Suz)
— (1 + v)Ss3; + V]
+ Suul2vSun + (1 — WMShn — V]
+ v(Syun — Sun)
Ry(x) = v(Sim + Ssn + Suss — 2)
+ (1 = v)Sn + Sus
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S$,(x) = Sunll — v)(Siz — Sun)
— (L + Sy, + 1 -]
+ S33[2vS1 + (1 — v) (S — 1]
+ (S — Sun)
Ur(x) = (Sin — Siz)
x [(1 = v)(Siu + Siz)
— (I — 39)S3,]
— (1 =S+ vSin
+ (1 — 2v)Sy,
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